tained from Figure 5 agrees well with that given in Figure 1.
For a $5-\mathrm{cm}$ sphere that simulates the head of an infant exposed to $918-\mathrm{MHz}$ radiation, the peak pressure at the center is 9.61 dyne $/ \mathrm{cm}^{2}$ as seen from Figures 6 and 7. This curve was obtained by letting $N=3$ in the approximated microwave-absorption pattern. The displacement in this case is approximately $9.34 \times 10^{-13} \mathrm{~m}$ for a peak absorption of $1 \mathrm{~W} / \mathrm{g}$ and an incident power density of $1282 \mathrm{~mW} / \mathrm{cm}^{2}$. As before, the pulse width is assumed to be $10 \mu \mathrm{sec}$. Again, good agreement is found between the fundamental frequency of mechanical oscillation and that predicted in Figure 1 for a $5-\mathrm{cm}$ sphere.
Figures 8 and 9 present the pressure and displacement in a $7-\mathrm{cm}$ sphere that simulates the head of an adult irradiated by $918-\mathrm{MHz}$ microwaves. Again, the pulse width is $10 \mu \mathrm{sec}$ and the peak absorption is $1 \mathrm{~W} / \mathrm{g}$, which corresponds to $2183 \mathrm{~mW} / \mathrm{cm}^{2}$ of incident plane wave power. The calculated peak pressure is 6.82 dyne $/ \mathrm{cm}^{2}$ and the displacement is about 3.97×10^{-13} meters. A careful examination reveals that the pressure values obtained are in qualitative agreement with results obtained experimentally at $1245-\mathrm{MHz}$ [Frey and Messenger, 1973; Lin, 1976c]. It should be noted that specific measurements of the human response to $918-\mathrm{MHz}$ radiation have not been reported to date.
Table 2 is a summary of peak pressures and displacements in four animals as irradiated by $10-\mu \mathrm{sec}$ pulses at the same level of absorbed energy. The incident power
$N=3$

Fig. 6. Sound pressure generated in a sphere of $5-\mathrm{cm}$ radius that simulates a human infant's head exposed to $918-\mathrm{MHz}$ radiation.

liig. 7. Displacement produced in a spherical head of $5-\mathrm{cm}$ radius.
$N=6$

Fig. 8. Sound pressure generated in a sphere of $7-\mathrm{cm}$ radius that simulates a human adult's head exposed to $918-\mathrm{MHz}$ radiation.

